Reaction of silylene with sulfur dioxide: some gas-phase kinetic and theoretical studies.
نویسندگان
چکیده
Time-resolved kinetic studies of the reaction of silylene, SiH2, with SO2 have been carried out in the gas phase over the temperature range 297-609 K, using laser flash photolysis to generate and monitor SiH2. The second order rate coefficients at 1.3 kPa (SF6 bath gas) fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-10.10 ± 0.06) + (3.46 ± 0.45 kJ mol(-1))/RT ln 10 where the uncertainties are single standard deviations. The collisional efficiency is 71% at 298 K, and in kinetic terms the reaction most resembles those of SiH2 with CH3CHO and (CH3)2CO. Quantum chemical calculations at the G3 level suggest a mechanism occurring via addition of SiH2 to one of the S=O double bonds leading to formation of the three-membered ring, thione-siloxirane which has a low energy barrier to ring expansion to yield the four-membered ring, 3-thia-2,4-dioxasiletane, the lowest energy adduct found on the potential energy (PE) surface. RRKM calculations, however, show that, if formed, this molecule would only be partially stabilised under the reaction conditions and the rate coefficients would be pressure dependent, in contrast with experimental findings. The G3 calculations reveal the complexity of possible intermediates and end products and taken together with the RRKM calculations indicate the most likely end products to be H2SiO + SO ((3)Σ(-)). The reaction is compared and contrasted with that of SiH2 + CO2.
منابع مشابه
Experimental and kinetic study of sulfur dioxide adsorption reaction generated from jet fuel combustion by sodium carbonate sorbent using the random pore model
Background and Objectives: SO2 pollution has become a serious concern. The aim of this study is SO2 removal from JP-4 fuel combustion. Materials and Methods: Experiments were performed by thermogravimetric analysis at different temperatures and various SO2 concentration. Kinetic study of non-catalytic gas-solid reaction was performed using mathematical modeling based on random pore model. Res...
متن کاملKINETIC STUDY OF SYNTHESIS OF TITANIUM CARBIDE BY METHANOTHERMALREDUCTION OFTITANIUM DIOXIDE
Abstract: Reduction of the Titanium dioxide, TiO2, by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150°C to 1450°C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method wa...
متن کاملTime-resolved gas-phase kinetic studies of the reaction of dimethylsilylene with triethylsilane-1-d: kinetic isotope effect for the Si-H insertion process.
Time-resolved kinetic studies of the reaction of dimethylsilylene, SiMe2, generated by laser flash photolysis of 1,1-dimethyl-1-silacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reactions with trimethylsilane-1-d, Me3SiD. The reaction was studied in the gas phase at five temperatures in the range 292-605 K. The rate coefficients showed no pressure depend...
متن کاملPreparation, Physiochemical and Kinetic Investigations of V2O5/SiO2 Catalyst for the Sulfuric Acid Production
V2O5/SiO2 catalyst was utilized to oxidize SO2 to SO3 species in the presence of oxygen mainly for producing sulfuric acid. For this catalyst, the active phase was a mixture of vanadium pentoxide and basic sulfate/pyrosulfate material. This active phase at the reaction temperature behaved as a liquid filling up the pores of the silica support. On the other hand, amounts of the SO3 and V5+ speci...
متن کاملTime-resolved gas-phase kinetic, quantum chemical, and RRKM studies of reactions of silylene with alcohols.
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 35 شماره
صفحات -
تاریخ انتشار 2013